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ABSTRACT

Short-period seismograms representing nine tele-
seismic earthquakes recorded by vertical component in-
gtruments in the extended E3 subarray at the Montana
LASA were bandpass-filtered and beam-formed to determine
the effect on average input signal-to-noise ratic, signal,

and noise.

Results of the study show that beamsteering all 25
outputs (prefiltered 0.4-3.0 cps) from the extended E3
subarray fails to improve the signal-to-noise by the
square root of N, where N is the number of inputs to
the beams. This is due partly to the fact that noise is
in some measure correlated between the more closely spaced
sensors and therefore is not reduced by N°, and partly to
signal losses (1-2 db) accompanying the beam-forming pro-

cess.

The analysis further indicates that beams consisting
of 3, 6, and 7 input traces prefiltered 0.4-3.0 cps reduce
rms noise levels at the subarray by approximately N° at a
minimum inter-sensor spacing equal to or greater than 6
kilometers. Finally, if the input data are prefiltered to
the band 0.6-2.0 cps, the minimum spacing for N% noise re-

duction is decreased to about 5 kilometers.




INTRODUCTION

This analysis was undertaken in support of the Vela
Seismological Center's effort to evaluate the performance
of the extended E3 subarray at the Large Aperture Seismic
Array in Montana, and to determine the minimum spacing for
short-period LASA subarray elements for which beamforming
reduces the rms noise level by N]? We are concerned with
signal loss, rms noise reduction,noise power reduction at
1 cps, and signal-to-noise ratio gain, resulting from pre-

filtering and beamsteering various combinations of outputs.

The data used in this study are nighttime recordings,
made by sensors in the E3 subarray, of nine teleseismic
earthquakes which occurred over a two month period, January-
March 1967. We refer to the enlarged E3 subarray which
has been in operation since December 1966. This subarray
has a diameter of ~ 19 kilometers, and contains 25 sensors
with spacings > 3 kilometers, as shown in Figure 1. Ad-
ditional information pertinent to sensor locations, azimuths,
and projections is listed in Table 1. The source data shown
in Table 2 were taken from P. D. E. cards furnished by the
USCEGS.

In this study data were reduced by detrending all seis-
mograms and by correcting for system magnification at 1 cps
to convert digital counts to millimicrons (mp ) ground dis-
placement. The data were further.prepared for beamforming
by prefiltering using two recursive bandpass filters, in-
dependent of one another, to eliminate noise frequencies lying
well outside the passband of the signal, i.e., long-period
microseisms and frequencies greater thon 2-3 cps. Outputs
from each filter were beamsteered automatically, by computer,
using the assumed‘apparent bhase velocity and back azimuth
(station-to-epicenter) shown in Table 2.

g o




» &

3 INWER CIRCLE REPRESENTS SIZE OF ORIGINAL E3

L

) | .-
vy Figure 1. LASA Extended E3 Subarray ;
&

A

.."

11967 '




TEESERE S =y i d
Avaqeqns €3 PapuaiIxi 3yl "L dLqel 3
658L° ¥ 1062° 8- 1586662 0°816 «1£,924901 WwEE. LLg9Y 98
26589 0EEL " ¥- 6106 82¢€ v €L8 w6€.1€25901 WO¥,21o9% 99
§981°¢€ 2LSL°S- 6156°862 8'£96 wi€.42,901 wl?,0Lg9¥ 9§
§€£9°1 90£G°€- 98.5 862 8°826 w92.22,901 w2616049% 9¢
8%05° - LLV8L- ¥PSL°0b2 8- €28 401,925,901 wZ€.90,9Y s¢
§290° 2z L~ LOLY " 0L2 L*8¥8 W¥1,92,901 w00, LLo9¥ 59
25€L°€- LLLL s 6515 8€2 2°868 w20.924901 w91, L0g9¥ S¥
§296°L- 6155°2- 9166 8£2 2°L26 20,225,901 wl0,80,9% €2
¥L1€5°6- €6L€" 22zl LLL 9° 126 wS¥.614901 w6¥,£0,9% v8
€8¥1°9- §l128°¢€- €825 602 2°898 w10,€25901 w61:50597 9
9¥6%°9- evoL” 2055°8L1 €° €96 wGS1614901 w82,50,9% S
900§ €- 2580° $509°8L1L v 816 w65161901 wG01£049% ve
9982 ¥- €2.8°L §L5G°8L1L 0°088 w95 ,€1,901 w6E,90,97 €L
6¥58°9- LEIL" Y s6LL 8YL $°916 w8¥,91,901 w91,50,97 €9
£698°2- 8EL2°S 8LES 8L L°5L8 wlS1515901 wG21 L0499 £t
08EY " L- 2L€9°2 6685°8L1L 0°t68 400,815,901 L1/ RO 9 €2
9€20°§ 9¥50°8 2650° 85 2°506 Wit €15901 Wl LLg9¥ z8
L¥82° 8696 L 806" L8 8°606 WlG1ELg90i wl0,60,9% 29
L189°€ 29L€°G €€95°6§ 2°258 w25.514901 wlS.0L 9% 2§
8E18 " L 1696°2 6565 "85 L' €58 Wb .- 1901 wlS16049¥ 3>
yLY6°8 gzvy" - 9¥91°LSE L"28L w$2,024901 w8¥7.ELo97 1L
2€00° L 5128°¢€ £629°82 ' /98 w¥0, 414901 wS¥ .21 o9¥ L9
6416°S 6l5L" - €¥PS " 8SE 9° €58 w01,024901 wZli21o97 Ly
6¥66°2 ¥9L0° - 8LE5'8S¢E 2°668 wl0,024901 wSE 019 12
€ €16 wE0,024901 #85,80,9% oL
(S/N)A (M/3)X N wodj saaubap)| (s4933uw) apn3jbuoy apnipiey *ON 40SU3$
s0u BubiASoTo LY wanujzy TIELICTE |

]




elIRQ 3d4N0S "7 3qe]

6'Y 19 uep (| €°21¢ 2 €2 8y
2y Lo uep || 0°cvl 9°61 681
vy L9 uep || 0°€0¢ 1! 12
i L9 uep |1 bUELE 0°61 LS
Lb L9 uep | L*CS 6°¢l €€
'R L9 uep | 6°60€ 2 12 LLe
'R L9 uep || ¥°L0€ £°22 g€
) L9 uep | 9 LLE 6°91 g€
9y L9 uep | Lole £°02 S¢
b 3leq yInwjzy A3120(ap WX U}
$9 7 3sn 13 ¥oeg juaseddy yadag m
zZLoot 0°06 36061 | N 0°82 v°22:95:20 | L9 @i 61 NXOX IHS
80¢8 9°6¢ M LL9 S 2°12 0°6L:LL:LL | £9 4ol /| Aneng
oLlLy §° L€ M E'SIL | N 9°€s 6°0V:L9:90 | L9 4®W £ | X04
6L1L8 0°€L 3S20L | N oO'2p 6°££:22:20 | L9 4ol (| 00IVNAOH
£26% £ vy MSvE | N 6°§S 0°¥2:50:€C | L9 4eW || SILNVILY H1¥ON
¥026 2°28 3 LLEL | N pU2e S LL9S:10 | £9 4my gt NHSNOH
956 0°98 3820l | N b 92 0°PLIEL:S0 | L9 el 80 91419vd HLNON
S91L v 99 3£°251 | N g8'9¥ 0°S§1:65:60 | £9 ey GO 37140X
£6.8 L 6L 3 6°6EL | N £°§¢ S ¥¥:L1:80 | L9 4EW 20 NHSNOH
W 930 *buoy "3e7 | duwp) upbirap 31eQ dWeN JUIA3
adurysig uoL3ed07




PROCEDURE

The short-period seismograms used in this analysis were
recorded by vertical-component LASA sensors which produce
upward trace deflection corresponiing to upward ground motion
at the recording site. All outputs were bandlimited either
in the range 0.4-3.0 cps or 0.6-2.0 cps, using 4-Pole Butter-
worth recursive filters whose amplitude responses were de-
scribed by Flinn et al, {1966).

Beamforming

Two procedures were used in selecting data to be beam-
formed. Our objective in the first was to evaluate the per-
formance of the extended array, and we concerned ourselves
with varying the number of inputs, N, to a beam as opposed
to evaluating the effect of inter-sensor spacing,A. Beams
were formed on P arrivals using data prefiltered to the
band 0.4-3.0 cps for N equal to 6, 12, 13, 18, 19, and 25.
These correspond to traces recorded in the outer (or inner)
ring, outer 2 rings, inner two rings plus the center, outer
3 rings, inner three rings plus the center, and the entire
subarray. We have already pointed out that a uniform dis-
tribution of sensors was not considered in beamsteering
these data. Consequently, it follows that about the only
meaningful reference to spacing is relative to the minimum
separztion of censors contributing to the beams; these
values (in kilometers) cormesponding to the beams Jiscussed
above are 9.5 or 3 (outer ring or inner ring, respectively),
b,y ¥ @y 35 Sid- 3

A similar procedure was used for <ach of nine events to
determine the average effect of a variable number of beam
inputs (V) on signal loss, rms noise reduction, noise power
reduction at 1 cps, and signal-to-noise ratio enhancement,
each quantity being referred to a mean taken from the input

traces.




Circumferential Spacing {km)

A
.

wi

§ 3% 6* g* g*
®

» 21 61 A
E’ 32 52 62 82
2 23 43 63 73
f;’-_ 34 54 64 84
£ 25 45 65 75
3 36 56 66 | 86

* plots Are Averages Taken Over Seven Events

Table 3. Sensor Groups and Spacing for N=6
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Spacing (km)

ontributing Sensors

3 6 8 9
10 10 10 10
21 41 61 n
32 52 62 82
23 43 63 73
34 54 64 84
25 45 65 75
36 56 66 86
Table 5. Sensor Groups and Spacing for N=7




Table 3 lists four sets of traces contributing tc beams
containing six inputs each (Nz6), where each set represents
traces recorded on an individual ring of the subarray. This
procedure was our Jirst attempt at holding N constant and
varying A, in this instance a circumferential measurement.
Seven of the original nine events were used to obtain average
values. The procedures discussed thus far were extended to
include power spectra based on individual channels and sum
traces. Spectral estimates were computed over 60 seconds
of noise (1200 digital points) using 120 lags.

In the second part of the study we used seismograms
recorded during the nisht of 17 March 1967 to establish a
relationship between inter-sensor spacing and noise reduction.
Two experimental methods were used to determine noise reduct-
‘ion by beaming either three or seven traces; the first method
relied on the zero lag autocorrelations and cross-correlations
as described in the following section, while the second con-
sisted of trace summation. In the case of N=3, uniform sensor
spacings of 3, 4, 6, 8, 9, 10, 14, and 1R kilometers were used
and for N=7 separations of 3, 6, 8, and 9 kilcmeters were em-
ployed. Solutions were obtained for data limited to the band
0.4-3.0 cps after which we repeated the process with traces
prefiltered to 0.6-2.0 cps.

In Tables 4 and 5 we have listed sensors which contri-
buted to 3-element and 7-element beams respectively. As shown
in Table 4, outputs from either 2 or 6 beams were used to com-
pute average noise reduction values. Referring to Table 5,
we note that only one beam for each spacing was used to de-
scribe noise behavior.

Zero-lag correlations

The reduction in noise due to straight summing is based
on the assumption that the data trace at each location in the

E3 subarray consists of a zero-mean, stationary-noise process

S (r e

e e e




with a cross-correlation function given by
' & ¥
Eln, (t)n, (t )} = Ry, (t-t") (1)

Under these condi*ions it can be shown that the noise reduction

due to summing can be expressed as
R = -10[log N - log{l + (N-1)5}] (2)

where p = M/N? is the ratio of the average zero-lag cross-cor-

relation. Hence

' R ()
kgz Ry g £0) ﬁ Kk

N(N-1) N

(3)

M=

This equation is the direct time domain equivalent of that used
by Capon et al. (1967) in the frequency domain, and can be in-
terpreted as the reduction over the entire band of interest. In
this report, this band is either (0.4-3.0 cps) or (0.6-2.0 cps),
since the data are prefiltered to either one of these two bands.
Now, examining equation (2) shows that if p = 0 the reduction

is =10 log N which is the (N)k value expected with uncorrelated
noise, however, if p is negative, then one may expect on certain
occasions to have noise reductions exceeding (N)k.

In the computational procedure for an array of N elements,
we shall present the sample estimates for the reduction which
are calculated from the estimated zero-lag auto-correlation
and crosc-correlation functions

T :
j nk(t)nL(t) dt, k,& =1,...,N
- :

ﬁkz(O) 3

=N




If the estimated reduction is R and the estimated value of the
parameter § is T then the sample reduction is written as

R = - 10[log N - log {1+(N-1)7}] (5)

It is experimentally observed that the cross-correlations
between sensors in the E3 subarray tend to decrease proportion-
ally to the spacing and that sets of seismometers at the same
spacing tend :o produce uniform sample reductions in noise.
This suggests that § is approximately constant for a given
spacing. If we assume that the normalized zero-lag cross-
correlation is constant for each pair in the array, i.e.,
sz(O)

p=_ k’£=l’.'t’N (6)
Ry (0D

then, using an argument similar to that used in deriving
Fisher's asymptotic z approximation (see Anderson 1958, pp.74-5) %
we may show that the distribution of the sample reduction appro-
aches a normal distribution with mean

uR = -10[1og N - log{1+(N-1)p}] (7) &

and standard error for the case N=z=3 '@i
Y 2NBT : 32

.

where B is the bandwidth over which the zero-lag correlations %l

are computed and T is the sample length in seconds. Figure 2
shows the expected reduction for each value of the common theo-
retical noise correlatibn for N=3. The two reductior points

of interest on the curve are for the values of p (as indicated
experimentally) coiresponding to 3-km and greater than or equal
to 6-kilometer spacings. The vertical deviations are 95% con-
fidence limits for the SDL filter with the parameters specified

I i n
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in the following table.

SDL Filter (.4-3.0) Lincoln Lab Filter (.6-2.0)
T 50 Sec 50 Sec
B 2.6 cps 1.4 cps
€BT 260 140
oR .715(1-p) .985(1-p)

Signal, Noise, and Signal-to-Noise Ratio

We define signal amplitude as one-half the peak-to-trough ex-
cursion, in mu, occurring in the first eight seconds of the P sig-
nature. Noise is considered to be either the rms value, in mu,
obtained in a 50-second interval ahead of P, or noise power, in
mp?, at 1 cps, computed from a 60-second sample ahead of the P
arrival. Signal-to-noise ratios are based on rms noise values.
Each of the quantities signal loss, rms noise reduction, and S/N
ratio improvement was computed in the following manner:

value on the beamformed output trace
average value from traces in the beam

db = 20 log (
and noise power reduction at 1 cps was determined by

noise power on the beamformed output tracé)
average noilse power on inrit traces

db = 10 log (

Finally, in those cases where noise reduction was computed in terms
of the zero-lag autocorrelation and cross-correlations, we used the

following formula:

db = -10 [lpg N—lpg{l+(N—l)5}]

As we pointed out earlier, values obtained for N=6 are averages
over seven events, whereas values based on the 17 March 1967 record-
ings for N=3 are averages of either 2 or 6 beams representing
different combinations »f outputs from sensors at a given spacing.

8 s
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RESULTS

In this section we first present results pertinent to
the effectiveness of beamsteerirng outputs from ths extended
E3 subarray (Figures 3, 4, 5, and 6), and then extend the
discussion to consider the effect of inter-sensor spacing
on short-period beamforming results (Figures 7 and 8).

Figure 3 is a plot of noise reduction, either rms or
power at 1 cpe, as a function of N. The figure illustrates
four significant pecints: first, Ng5 reduction is obtained
for noise power at 1 cps only in the case of N=§ (the outer
ring); second, the reduction of rms noise levels never
guite reached N%; third, noise reduction ir lecs favorable,
relative to N%, for greater N; and fourth, beams made of
outputs from the outer ring(s) yield more noise reduction than
those consisting of traces recorded in the irney ring(s).
Theilast result is explained by the fact that inter-sensor
spacing tends to be greater on the outside rings, and the
noise is therefore less correlated between adjacent sensors.

Figure 4 shows average S/N gain as a function cof N.
Here we see immediately that N;i enhancement is never
achieved, due largely to the fact the rms noise reduct_.on
falle short of N% as shown by Figure 3, and partly because
1-2 db of signal is lost in the beamforming process. We
further note that enhancement is less favorable relative to
Nk for larger N, and that the outer ring(s) yield better
results than the irner ring(s).

Figures 5 and € show noise reduction and S/N enhance-
ment versus sensor spacing for N=6. In this case beams wepre
formed using outputs frem individual rings so that values
plotted at A = 3 km correspord to data recorded on the in-
side ring, A = 6 the second ring, A=8 the third ring, anc’

e
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A = 9.5 km the outside ring; these spacings could more appro-
priately be called "minimum" intervals. As.shown in Figure §,
noise power at 1 cps is reduced by N;i in the A interval 6-8
kilometers, and rms noise is reduced to within 1 db of N;i at

A = 6 and remains reasonable constant thereafter. On the other
hand, S/N enhancement (Figure 6) reaches a maximum, + 5 db, at

A = 6 and remains essentially constant beyond. Once again we

are reminded that imprecision in the beamforming process accounts
for 1-2 db signal loss.

We turn now to examples of beamforming in which N has
been held constant and spacing between adjacent sensors has
been changed from a minimum of 3 km to a maximum of 16 km
(Figures 7 and 8). Data plotted on Figure 7 were prefiltered
to 0.4-3.0 cps, while those shown in Figure 8 were bandlimited
in the range 0.6-2.0 cps. In both figures the dashed curves
represent results for noise reduction based in part on the
average of the noile mean squares (equation 2),whereas ‘the
plottéd points are Lased on the average rms value input tc the
bear . Refeﬁring to Figure 7, we note that the minimum sensor
spacing indicated by either experimental method for N=3 or N=7
is about 6 km, if N;i noise reduction is desired. Actually,
values based on average rms reach N;i reduction at 8 or 9 km.
It is important to remember that the plotted data for N=3
are really averages of either two or six beams. whereas, each plot
for N=7 was taken from a single beam. As shown in Figure 8, the
minimum spacing indicated for data prefiltered 0.6-2 cps is about
5 km, and rms values reach N!s at about 8 km spacing.
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- CONCLUSIONS

«

The following conclusions are based on the results of
a beamforming study which used short-period vertical-com-
ponent seismograms recorded during January-March 1967 in
the extended E3 subarray at the Montana LASA. With the
exception of beams made up of seven inputs, our results
represent averages taken from several beams.

1. Beams consisting of prefiltered (0.4-3.0 cps)

;5 ;

inputs from the entire extended E3 subarray do not vield N
improvement in signal-to-noise raiio. This is due primarily
to the fact that noise is partly correlated between adjacent :
sensors and therefore is not reduced by as much as N%,and '
partly to signal losses accompanying the beamforming process.

2. If input data are prefiltered to 0.4-3.0 cps, beams
. composad of six traces reduce noise by approximately N% when
B element spacings are equal to or greater than 6 kilometers. ﬁ

3. For data prefiltered 0.4-3.0 cps, beams consisting ;
of either 3 or 7 inputs reduce the average of the noise mean
squares and average rms noise approximately by N® at a
minimum sensor separation equal to or greater than 6 kilometers.
If the data are prefiltered 0.6-2.0 cps, the minimum spacing :
is reduced to about 5 kilometers. E

4. Average signal loss due to imprecise beams amounts
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